Testing the abundant-centre hypothesis using intertidal porcelain crabs along the Chilean coast: linking abundance and life-history variation

Marcelo M. Rivadeneira1,2, Patricio Hernáez3,4, J. Antonio Baeza5,6, Sebastian Boltaña7, Mauricio Cifuentes7, Cristian Correa7, Alejandra Cuevas7, Erasmo del Valle7, Iván Hinojosa7, Niklas Ulrich7, Nelson Valdivia7, Nelson Vásquez7, Anke Zander7 and Martin Thiel7

ABSTRACT

Aim The abundant-centre hypothesis (ACH) is based on the assumption that physiological constraints limit populations at the edges of their distributional range, yet the geographical variation of physiological performance or life-history traits has rarely been examined. Here we examine the applicability of the ACH in a marine system by testing whether physiological predictions are reflected in large-scale variations of life-history traits.

Location The Chilean coast (18°–42° S), encompassing more than 2500 km along the Pacific coast of South America.

Methods Five porcelain crab species (Petrolisthes granulosus, Petrolisthes laevigatus, Petrolisthes tuberculatus, Petrolisthes violaceus and Allopetrolisthes angulosus) were sampled on intertidal boulder beaches at 13 sampling sites. For each species and site we evaluated: (1) relative abundance (density), (2) maximum size, (3) size at maturity, (4) sex ratio, (5) proportion of ovigerous females, and (6) presence of recruits. The shape of the spatial distribution of each trait was evaluated statistically against the prediction of four hypothetical models (normal, ramped-south, ramped-north and abundant-edge).

Results The relative abundance and life-history traits showed different spatial patterns among species. Relative abundance (across sites) was fitted by a normal model in only two species. No model fitted the spatial variation in body size and size at first maturity, which showed a slight but monotonic poleward increase in all species. Sex ratio showed a prominent hump-shaped pattern, with females prevailing in the centre of the ranges and males dominating towards the range boundaries; this pattern was statistically significant in three of the five studied species. The proportion of ovigerous females showed no clear latitudinal trends, and mature individuals were observed across most of the geographical range of the species. However, recruits tended to be absent towards the southern (poleward) boundaries of the distribution.

Main conclusions The ACH does not apply to all species equally. The link between abundance and life-history traits is complex and variable among the porcelain crab species studied. Overall, the observed patterns were consistent with the idea that equatorward boundaries might be controlled by physiological restrictions mainly affecting adult survival, whereas poleward boundaries might be shaped by limitations in reproductive output and larval survival. Our results underline the importance of incorporating ecological, physiological and life-history studies in future tests of the ACH.
INTRODUCTION

The abundant-centre hypothesis (ACH) is based on Brown’s principle (Brown, 1984), which predicts that the abundance of a species should be highest at the centre of its geographic range and decline towards the edges (Brown, 1984; Brown et al., 1995; Enquist et al., 1995). This principle is an extension of Hutchinson’s niche concept (Hutchinson, 1957), and assumes that living conditions are optimal at the centre of the range, and that local abundance is a reflection of the individual-level success (Brown, 1984; Gilman, 2005). However, recent reviews have shown that many species do not follow Brown’s principle and that the abundance pattern of different species varies across their geographic ranges (Sagarin & Gaines, 2002a; Gaston, 2003; Sagarin et al., 2006).

Because the study of geographic patterns of abundance variation offers little insight into the underlying processes that shape the population distribution and range boundaries, several authors have proposed a more integrated framework to study the ACH, including life-history traits, proxies for physiological conditions, biophysical variables, and genetic structure (Caughley et al., 1988; Gilman, 2006a,b; Sagarin et al., 2006; Lester et al., 2007). The factors shaping the abundance distribution and range boundaries should be reflected in the geographic variation of life-history proxies. For instance, low abundances at poleward boundaries often seem to result from recruitment limitation, which can be related to the reduced reproductive capabilities of adults (i.e. prolonged incubation times and short reproductive seasons) and/or the low survival of larvae and juveniles towards the edge (Zacherl et al., 2003; Gilman, 2006a,b; Sanford et al., 2006). In contrast, equatorward boundaries are often related to the thermal limitations of adults (Stillman & Somero, 2000; Stillman, 2002; Sorte & Hofmann, 2004; Compton et al., 2007), which may be linked to a number of physiological and life-history traits (Osovitz & Hofmann, 2007), including reduced body sizes (Hummel et al., 2000). Geographic patterns of variation in abundance may also be size-dependent (Wenner, 1972) or differ between sexes, producing a latitudinal gradient in sex ratios (Defeo & Cardoso, 2002).

The Chilean coast offers an excellent model system with which to test these predictions because it has a predominant north–south orientation, which simplifies the biogeographic questions to one dimension (Rivadeneira & Fernandez, 2005). Gradual changes in various oceanographic and climatic conditions are observed along the Chilean coast, which affect intertidal populations (Strub et al., 1998; Fernández et al., 2000; Camus, 2001; Thiel et al., 2007). For instance, upwelling is more persistent throughout the year in northern Chile, but highly seasonal in southern Chile (Montecino et al., 2005). Similarly, sea surface temperature decreases from about 20 °C in northern Chile to < 10 °C in southern Chile (e.g. Hinojosa et al., 2006), possibly causing latitudinal variations in the life-history traits of coastal organisms.

Herein we used five closely related species of porcelain crabs (Anomura: Porcellanidae), which have wide distributional ranges extending over > 20 latitudinal degrees along the Southeast Pacific coast. Porcelain crabs are ideally suited to testing the ACH and the underlying assumptions, because they are very common components on intertidal boulder beaches along the Chilean coast (Castilla & Paine, 1987). In spite of intense human harvesting in coastal ecosystems of Chile (Castilla, 1999; Moreno, 2001), these species are not extracted by coastal gatherers, thus minimizing the effects of human activities on the observed geographic patterns (Sagarin et al., 2006).

Although some information on the intertidal zonation patterns (Viviani, 1969; Emparanza, 2007) and reproductive biology (Antezana et al., 1965; Lardies & Wehrmann, 1996; Hernáez & Palma, 2003; Gebauer et al., 2007) is available, the large-scale geographic variation in abundance or life-history traits of porcelain crabs along the Southeast Pacific coast has not previously been evaluated. The analysis of published information, however, provides a basic framework with which to predict geographic patterns of variation in the abundance and life histories of porcelain crabs along this coast. A study conducted at a single site in northern Chile (Emparanza, 2007) revealed that the relative abundance of the examined porcelain species fits at least partially with the predictions of the ACH: species close to their geographic boundaries had lower abundances, whereas species closer to their centres of distribution reached either high or low abundances (sensu Enquist et al., 1995; Killawi et al., 2000). Other studies provide insights into the patterns of variation in life-history traits and the factors shaping the boundaries of the distribution. For instance, in several species the maximum size seems to increase towards higher latitudes (Hernáez & Palma, 2003), thus supporting the predictions of the temperature-size rule (Atkinson & Sibly, 1997; Angilletta & Dunham, 2003). Locally, adult body size also shows a marked cline across the intertidal zone, decreasing towards the upper intertidal zone, where desiccation risk is more intense (Emparanza, 2007); this suggests that body sizes should also decrease towards the

Keywords

Abundant-centre hypothesis, Brown’s principle, intertidal zone, macroecology, macrophysiology, Porcellanidae, sex ratio, size–temperature rule, Southeast Pacific.
equatorward boundaries in response to the higher thermal stress (Stillman & Somero, 2000; Stillman, 2002). At the poleward boundaries of the geographic range, different proxies (e.g. annual brood production, fecundity, larval duration) indicate that reproductive output and larval survival could be considerably lower than at the equatorward boundaries (Antezana et al., 1965; Hernández & Palma, 2003; Gebauer et al., 2007). In addition, physiological constraints might particularly affect female porcellanids, which produce yolk-rich eggs and incubate their broods for several weeks (Lardies & Wehrtmann, 1996; Hernández, 2001; Hernández & Palma, 2003; Lardies et al., 2004; Gebauer et al., 2007). Thus, depending on the shape of geographic variation in the reproductive and other physiological costs, sex ratios may vary monotonically or nonlinearly across the geographic range of a species.

Here, we tested these ideas, analysing the geographic variation in the abundance and life-history traits (maximum size, size at maturity, sex ratio, proportion of ovigerous females, and presence of recruits) of five common intertidal porcelain crabs (Petrolisthes granulosus, Petrolisthes laevigatus, Petrolisthes tuberculatus, Petrolisthes violaceus and Allopetrolisthes angulosus) along the Chilean coast (18°–42° S), across c. 2500 km and encompassing most of the latitudinal ranges of these species. We hypothesize (1) that geographic variation in abundance should follow the predictions of the ACH, and (2) that geographic patterns in life-history traits should reflect the existence of different mechanisms controlling equatorial (thermal/physiological constraints) and poleward (reproductive/larval constraints) boundaries.

MATERIALS AND METHODS

Data collection

We sampled at wave-exposed boulder beaches (boulders of 10–50 cm diameter) at 13 sampling sites along the Chilean coast (Fig. 1 and Appendix S1 in Supporting Information), encompassing c. 25° of latitude. All sites were visited once during austral summer (January and February 2000), and so the recorded patterns must be considered as a ‘snapshot’. However, because all studied species are relatively long-lived, temporal variations in abundance should be limited (Sagarin & Gaines, 2002b; Gilman, 2005). Previous studies on P. laevigatus from southern Chile indeed showed very little intra- and inter-annual variability in local abundance (Lardies et al., 2004; Gebauer et al., 2007). Furthermore, because sampling was carried out during a single season (with a time-lag of < 2 months), it may be considered as a representative picture of the system at that given time window, and under the prevailing oceanographic conditions. The snapshot sampling could affect the absolute magnitude of some of the reproductive variables (i.e. the percentage of ovigerous females). This would be especially problematic if, in addition, the timing of the reproductive peaks exhibited a latitudinal gradient, as seen.
in other species (e.g. Lewis, 1986; Henmi, 1993; Defeo & Cardoso, 2002). However, because most of the littoral porcelain species have year-round reproduction (i.e. there will always be reproductive females, Antezana et al., 1965; Baeza & Thiel, 2000; Baeza et al., 2001, with P. laevigatus being an exception, see below), the reproductive patterns presented herein can be considered representative for most species, even though our snapshot sampling did not enable us to identify temporal variations.

For logistical reasons, we did not explicitly consider vertical variation in species abundance, and sampling was conducted at the mid–low intertidal levels, where the vertical ranges of distribution of the studied species overlap (see Table 1). Although species abundance may vary across the vertical gradient (Antezana et al., 1965; Emparanza, 2007), it is unlikely that this will severely affect the outcome of our analyses, because: (1) despite changes in physical and biological conditions, zonation patterns tend to be stable along the Chilean coast (see Antezana et al., 1965; Viviani, 1969; Villarroel, 1989; Emparanza, 1999, 2007); (2) despite variation in species abundance across the vertical gradient (Viviani, 1969; Villarroel, 1989; Emparanza, 1999, 2007), a study carried out in northern-central Chile showed that this variation is very systematic across sites (Villarroel, 1989); and (3) in most species and sites, maximum abundances are recorded at mid–low intertidal levels (Viviani, 1969; Villarroel, 1989; Emparanza, 1999; but see Emparanza, 2007). These considerations suggest that the large-scale patterns of abundance observed in our study may not be severely biased by the fact that sampling was concentrated at the mid–low intertidal level, although this possibility cannot be entirely dismissed.

At each site, six 0.25-m² replicate quadrat samples were taken along a shoreline of variable extension parallel to the coast (1–5 km) in order to obtain representative samples for that geographic location. Furthermore, at some sites, boulder beaches were relatively small (< 20 m beach length), and in order to avoid local impacts from sampling we had decided to take only one single quadrat sample in these small boulder pockets; consequently, sampling was then spread over a wider extension (up to 5 km) along the shoreline.

Three people conducted the sampling: one held a stopwatch and the sampling tray, while the other two were responsible exclusively for the sampling of crabs. This sampling protocol was followed in order to minimize underestimations caused by individuals escaping. Upon a signal from the time-keeper, the two other people started removing boulders and sampling all crabs that could be reached. Usually one person moved a boulder while the other captured all crabs as quickly as possible and threw them into the sampling tray. This sampling process continued for 60 s and usually it was roughly limited to the area outlined by the sampling quadrat. Individual samples were preserved in 5% formalin. Samples were taken back to the laboratory, where they were washed with freshwater over a 0.25-mm sieve before sorting. All crabs were identified to species level, counted, sexed (according to the presence/absence of the modified male pleopods), and measured (carapace width) with a 0.1-mm-precision caliper. We also recorded the presence of egg masses in females.

Analyses

A total of 14,241 individuals were collected (mean = 1095 individuals per site), and five porcelain species were recorded (P. granulosus, P. laevigatus, P. tuberculatus, P. violaceus and A. angulosus). A summary of the information obtained is given in Table 1. The data were used to estimate several variables for each species at each site: (1) absolute and relative abundance, (2) maximum body size, (3) size at maturity, (4) sex ratio, (5) proportion of ovigerous females, and (6) presence of juveniles. Absolute abundance was estimated as the total number of individuals recorded at each site divided by the total area sampled, and was expressed as individuals m⁻². The relative abundance of a species at a given site was estimated as the total number of individuals of this species present, divided by the number of individuals recorded at the site with maximum abundance, in order to facilitate interspecific comparisons (Enquist et al., 1995; Sagarin & Gaines, 2002b). Maximum

Table 1 Summary of the main ecological and biogeographical properties of the five species of porcelain crabs analysed in this study. Vertical distribution refers to the intertidal zone occupied by each species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Vertical distribution</th>
<th>Total individuals sampled</th>
<th>Median density across sites (Ind. m⁻²)</th>
<th>Maximum density across sites (Ind. m⁻²)</th>
<th>Mean size (minimum–maximum) (mm)</th>
<th>Identification threshold for sex (mm)</th>
<th>Reported range limits (north–south)</th>
<th>Source for range limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrolithes granulosus</td>
<td>Mid–high</td>
<td>1506</td>
<td>5.3</td>
<td>292.6</td>
<td>5.0 (0.9–12.0)</td>
<td>5</td>
<td>5–42</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>Petrolithes laevigatus</td>
<td>Mid–high</td>
<td>1407</td>
<td>0.66</td>
<td>891.3</td>
<td>9.5 (0.9–22.6)</td>
<td>6</td>
<td>5–50</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Petrolithes tuberculatus</td>
<td>Low–mid</td>
<td>1082</td>
<td>53.3</td>
<td>188.6</td>
<td>5.9 (1.4–17.9)</td>
<td>6</td>
<td>12–42</td>
<td>2, 4</td>
</tr>
<tr>
<td>Petrolithes violaceus</td>
<td>Low–mid</td>
<td>6890</td>
<td>202.7</td>
<td>968.0</td>
<td>8.3 (1.0–33.6)</td>
<td>6</td>
<td>12–46</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Allopetrolithes angulosus</td>
<td>Low–mid</td>
<td>3356</td>
<td>38.0</td>
<td>762.6</td>
<td>7.4 (1.0–18.3)</td>
<td>5</td>
<td>5–46</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

Ind. m⁻², individuals per m².

body size was estimated as the 95th percentile of the size frequency distribution, a measure less prone to bias than that of the single largest individual. Similarly, size at maturity was estimated as the 5th percentile of the distribution of body sizes of egg-carrying females. Sex ratio was estimated as the number of females divided by the number of males. Because sexual identification can be uncertain in small individuals, only individuals above a species-specific body size threshold were used (Table 1). This threshold was considered sufficiently large to ensure that sex was correctly identified. Departures from the expected 1:1 ratio were tested statistically using an exact chi-square test, but conclusions should be interpreted with care as the number of individuals showed marked variations across the latitudinal range, and hence the test has a low power at sites with a low number of individuals (e.g. at the edges of the distribution, see Results). The proportion of ovigerous females was estimated as the number of egg-carrying females divided by the total number of females. The presence of juveniles (sexually immature individuals) was used as coarse proxy for recruitment (Zacherl et al., 2003; Gilman, 2006b).

We analysed large-scale trends in the variation of the life-history traits for each species. Because the Chilean coast runs mostly in a north–south direction, latitudinal trends may reflect overall geographic trends. To facilitate interspecific comparisons, we tested whether the life-history traits of a species varied along the relative position of each site over its latitudinal range. This was done separately for each species, using the expression proposed by Enquist et al. (1995) and Sagarin & Gaines (2002b):

$$RI = 2(L - S)/R,$$

where RI is the range index, or the relative position of each site across the range (varying between \(-1\) and 1: \(-1\) = northern edge, 0 = centre of range, 1 = southern edge), L is the site location (in degrees of latitude), S is the latitudinal midpoint of the species’ range, and R is the latitudinal range (in degrees of latitude). Latitudinal limits of distributions were determined using literature records (Table 1). Most of the species have northern edges of distribution along the coast of Peru, that is, outside the study region. However, the study region encompassed most of the latitudinal ranges of all studied species (53–80%, Fig. 1), so that the observed patterns can be considered as representative. Large-scale patterns of life-history-trait variation (except for the presence of juveniles) were fitted to four hypothetical models, following the procedure developed by Sagarin & Gaines (2002b) (Fig. 2). These models represent the most common abundance patterns of a species throughout its geographic range (Sagarin & Gaines, 2002a; Gaston, 2003; Sagarin et al., 2006). In the first model (normal, Fig. 2a), maximum abundance is expected to follow a normal distri-
bution, with maximum values being reached at the centre of the range, decreasing to zero towards the northern and southern edges. The second model (abundant edge, Fig. 2b) assumes the inverse pattern, with maximum abundances observed at the edges of the range, and minimum values in the centre. The two remaining models (ramped south, ramped north, Fig. 2c,d) assume that the maximum abundances decline from one range limit to the other and that intermediate abundances are reached at the centre of the range. The degree of fit of each model to the observed data was evaluated by calculating the sum of squared deviations (SS) for sites exceeding the constraint boundary generated by each model (Fig. 2). Values of SS close to 0 indicate good agreement between the model and the observed data. The significance of the observed SS values was evaluated by generating 10,000 randomized values of RI and relative abundance. The fit of the model was considered significant when the observed SS value was lower than the 5th percentile of the randomized distribution. Because *P. laevigatus* was absent from many sites, its latitudinal variation in life-history traits is presented but is not tested against the models. Furthermore, this is the only species with a clear seasonal reproductive cycle, with high proportions of ovigerous females in winter and spring (Lardies et al., 2004; Gebauer et al., 2007), which impedes the analysis of any spatial patterns in the proportion of ovigerous females of *P. laevigatus* in the present study.

Spatial patterns of occurrence of juveniles were analysed using a logistic regression between juvenile presence (1 = present, 0 = absent) and range index. All analyses were carried out using the R software (R Development Core Team, 2007). Simple latitudinal gradients in life-history traits were tested using Pearson product–moment correlation, with *P*-values corrected for any possible spatial autocorrelation using Dutilleul’s method (Dutilleul, 1993) implemented in the SAM software (Rangel et al., 2006).

RESULTS

The geographic pattern of density and relative abundance varied among the different species (Fig. 3). For *A. angulosus* and *P. tuberculatus*, the highest densities were found near the centre of their respective geographic ranges; that is, the relative abundance showed a hump-shaped pattern, fitted by a normal model. For *P. violaceus*, the highest densities were found at the northern edge of the geographic range and the abundance pattern was significantly fitted by a ramped-north model. A hump-shaped trend was evident for *P. granulosus*, but the normal model was not significant (*P* = 0.08). For *P. laevigatus*, the most common porcelain species in the southern region, abundance peaked around 40° S, but it was extremely rare in central and northern Chile. No model fitted the distribution, although a ramped-south model fitted significantly after abundance was log-transformed.

In general, maximum size and size at first maturity showed a poleward increase, with larger values being found at the southern edge of the distribution (Fig. 3). However, neither maximum size nor size at first maturity were fitted by any of the hypothetical models for any of the five species; latitudinal trends were also not significant (Table 2). Nevertheless, in all cases the correlation values were positive; assuming binomial probabilities of obtaining positive or negative values (*P* = 0.5), the chances of obtaining only positive correlations were low.
Sex ratios showed a consistently hump-shaped pattern, and they were best fitted by a normal model in three out of the four tested species (Fig. 4). In the case of Petrolisthes violaceus, the pattern remained firm even after the maximum sex-ratio value was removed from the analysis. The hump-shaped pattern was also evident in the case of Petrolisthes tuberculatus, but this was not significant, probably because the maximum values of sex ratios were slightly displaced towards the southern portion of the range. The sex ratios were particularly high (biased towards females) at the centre of the distribution, up to five-fold compared with the edges. The bias favouring females was significant in the case of Petrolisthes violaceus, Allopetrolisthes angulosus and Petrolisthes tuberculatus. Moreover, the highest sex ratios of Petrolisthes laevigatus (not tested statistically) were recorded very close to the centre of its range.

Ovigerous females were found at the vast majority of sites (77–100%, depending on the species). In the case of Allopetrolisthes angulosus, the pattern fitted a normal distribution: up to 70% of females carried eggs at the centre of the range, compared with c. 13–40% towards the southern and northern edges (Fig. 4). In contrast, no model fitted the observed patterns for Petrolisthes violaceus, Petrolisthes tuberculatus and Petrolisthes granulosus, and the proportion of ovigerous females remained relatively high (30–50%) throughout the study area.

The presence of juvenile recruits was less common – they were recorded in only 31–70% of all sites, depending on the species. The occurrence of juveniles tended to be concentrated at the centre and the northern margins of the geographic distribution (Fig. 4), but the trends were not statistically significant (logistic regression, \(P > 0.05 \) in all cases). However, no juveniles of any species were recorded at sites close to the southern edges of the distribution (i.e. range index > 0.54). In contrast, juveniles were detected at all sites with a range index < −0.40.

DISCUSSION

Generality of the ACH

Our results provide an empirical test of the ACH, and of its possible connections with geographic variations in life-history traits. Although the ACH has recently been considered more an exception than a rule (Sagarin & Gaines, 2002a,b, 2006; Table 2: Latitudinal gradient of variation in maximum body size and size at maturity in all studied species. The significance values of Pearson product–moment correlations were corrected for spatial autocorrelation (Dutilleul, 1993).

<table>
<thead>
<tr>
<th>Species</th>
<th>Maximum size Correlation</th>
<th>P-value</th>
<th>Size at maturity Correlation</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrolisthes granulosus</td>
<td>0.44</td>
<td>0.24</td>
<td>0.78</td>
<td>0.07</td>
</tr>
<tr>
<td>Petrolisthes laevigatus</td>
<td>0.18</td>
<td>0.66</td>
<td>n.e.</td>
<td>n.e.</td>
</tr>
<tr>
<td>Petrolisthes tuberculatus</td>
<td>0.68</td>
<td>0.16</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td>Petrolisthes violaceus</td>
<td>0.71</td>
<td>0.16</td>
<td>0.69</td>
<td>0.19</td>
</tr>
<tr>
<td>Allopetrolisthes angulosus</td>
<td>0.45</td>
<td>0.35</td>
<td>0.44</td>
<td>0.25</td>
</tr>
</tbody>
</table>

n.e., not estimated.

\(P = 0.02 \) for maximum size, and \(P = 0.06 \) for size at first maturity.

The presence of juvenile individuals is shown (black triangles, lower panel). Also shown is the best model fitting the observed patterns (bold lines, see models in Fig. 2 and text for details). The models were not tested for Petrolisthes laevigatus owing to the absence of this species at many sites. The arrows indicate the range limits of each species (see Table 1).
ranges and declined in abundance towards the edges, but only
Fiori & Defeo, 2006; Fenberg, 2008). Three of the five studied
(Table 1), although the trend was not significant in
evident only in small-sized and less abundant species
in their biology. It is interesting to note that the ACH was
abundance patterns should arise from more subtle variations
in ecology and life-history traits, and thus any differences in
ranges may not be representative of the realized geo-
graphic range at a given moment in time. The realized
range may differ substantially from the reported geographic
range of these intertidal species oscillates depending on the
predominant oceanographic conditions.

ACH and sex ratios
Surprisingly, of all the analysed traits besides abundance, the
sex ratio was the one showing strongest support for the idea of an
‘optimum centre’ across the geographic range of the species.
Notably, the proportion of females is maximized at the centre of
ranges, whereas at both edges of the distributions the
populations tended to be dominated by males. Deviations
from the expected 1:1 ratio are fairly common in crustaceans
in general (Wenner, 1972). Studies on the mole crab
Emerita analoga from sandy beaches have shown a different latitudinal
gradient, with an increasing proportion of males found at the
equatorward boundary of the range (Defeo & Cardoso, 2002),
but to our knowledge this is the first time that this hump-
shaped pattern has been reported at biogeographic scales.
To the best of our knowledge, ontogenetic sex change occurs
neither in porcelain crabs nor in closely related clades of
anomuran crabs (e.g. squat lobsters, king crabs and hermit
crabs, Baeza et al., 2001; Chiba, 2007), and consequently other
mechanisms must be responsible for the observed pattern.
According to theoretical models, if the survival of both sexes is
affected differentially along an environmental gradient, then
the sex ratios in the population should depart from the
expected 1:1 ratio and vary in a predictable way along the
gradient (Charnov et al., 1981). The high sex ratios found at
the centre of the ranges may imply either enhanced survival of
females, or reduced survival of males, or a combination of
both. We hypothesize that the prevalence of females (i.e. lack
of males) at the centre of the ranges may result from an
enhanced intraspecific competition among males. Intraspecific
competition can be intense in porcelain crabs, and at high
densities survival may be severely affected (Donahue, 2004,
2006). Because males tend to be highly territorial during courtship (reported for other porcelain species by Molenock, 1975), strong intra-sexual competition among males may reduce their survival at the centre of the range, perhaps by means of agonistic interactions (Rypien & Palmer, 2007). Although male survival appears to be diminished at the centre of the range, at the edges female survival might be suppressed. For instance, high and low temperatures towards the edges of the geographic ranges of our species might raise the costs of egg production and brooding, resulting in diminishing survival of reproductive females. In support of this idea, Fischer & Thatje (2008) reported that the annual number of egg-masses

Figure 5 Sensitivity of the conclusions about the shape of the abundance and distribution to changes in the true northern and southern limits. The abundance and distribution patterns generated by each northern/southern limit combination were evaluated against the predictions of four hypothetical models of distribution (Fig. 2, and see Methods for details). No model fitted the abundance distribution of *Petrolisthes granulosus*. Note that in all species but *Petrolisthes laevigatus* the shape of the abundance distribution remained unaffected after even large changes in the precise locations of the northern and southern boundaries.
Abundance and life-history traits of intertidal porcelain crabs

Factors shaping the equatorward boundaries of porcelain species

Even though the connections between abundance and other traits are not absolutely clear, the geographic patterns found for these traits provide some clues about the processes that shape population structure at the edges of the ranges. For instance, our data indicate that populations close to the northern (equatorward) edge tended to have smaller maximum sizes and smaller sizes at maturity, as also seen in other intertidal species (Defeo & Cardoso, 2002; Cardoso & Defeo, 2004). Along the intertidal vertical gradient, smaller adult sizes are often found at higher intertidal levels, a pattern that has been related to higher thermal stress in local-scale studies (Emparanza, 2007). The equatorward edge of the geographic range of marine invertebrates is often limited by thermal stress (Sorte & Hofmann, 2004, 2005; Compton et al., 2007). Indeed, experimental studies have demonstrated that the upper lethal temperatures of several Petrolisthes species (P. violaceus, P. tuberculatus and P. granulosus) is c. 29–35 °C (Stillman & Somero, 2000; Stillman, 2002), which is very close to the maximum aerial temperatures recorded in northern Peru (Takahashi, 2004). The higher mortality rates associated with smaller sizes and higher temperatures (Defeo & Cardoso, 2002; Cardoso & Defeo, 2004) could also negatively impact adult abundance. The explanation of thermal limitation may apply to the four species exhibiting a decline in abundance towards the northern boundary, but apparently not to P. violaceus. Further sampling at the northern geographic range of this species along the Peruvian coast is urgently needed in order to validate the hypothesized processes and mechanisms shaping the equatorward edge of the distribution.

Factors shaping the poleward boundaries of porcelain species

Although the ACH cannot be generalized for all studied species, abundance declined sharply towards the southern edge of their distributions for four of the five species. However, for P. laevigatus the southern edge is located far from the study area, and thus it was not possible to evaluate the pattern appropriately. For the remaining four species, the pattern of lower abundances at the southern edges cannot be explained by reduced physiological performance of adults, as hypothesized for the equatorward edge. Indeed, the largest individuals, a gross indicator of higher individual survival (Gilman, 2005), were commonly recorded close to the southern edges.

The underlying processes shaping the southern boundaries of the distributions of porcelain species could be related to an overall reduction in benthic recruitment. This idea is supported by the lack of juveniles towards the southern edges, despite the presence of ovigerous females across most of the distributional ranges of the studied species. This does not mean that recruitment never occurs at these sites, but that local recruitment may fail more often than in the northern region. Two mutually non-exclusive mechanisms could be causing this limited recruitment in the south: (1) lower reproductive output and/or (2) increasing larval mortality. Lower reproductive output in southern Chile is suggested by several proxies, including fewer eggs produced (Antezana et al., 1965; Hernández & Palma, 2003; Gebauer et al., 2007), shorter reproductive seasons (Antezana et al., 1965; Lardies & Wehrtmann, 1996; Baeza et al., 2001; Gebauer et al., 2007), prolonged incubation times (Hernández, 2001; Lardies et al., 2004), and lower larval density in the plankton (Ulloa & Palma, 1998; Mujica, 2007). Furthermore, an increase in larval mortality should also result in an overall reduction of benthic recruitment. High larval mortality as a result of cooler water temperatures might play a key role in shaping the poleward distribution, as seen in other marine species (Zacherl et al., 2003; Gilman, 2006a,b; Sanford et al., 2006). Studies aimed at comparing the intensity of recruitment, reproductive output, and thermal tolerances of larvae across the Chilean coast are needed in order to test these ideas.

Concluding remarks

The ACH, albeit not universal, is a recurring phenomenon, and its value as a biogeographic hypothesis should not be dismissed until further evaluations become available (Sagarin & Gaines, 2002a). By including life-history aspects of the species, new insights into the factors shaping the geographic variation in abundance become evident. Some of our results support the suggestion that physiological constraints (here evaluated by means of demographic proxies) might contribute to the lower abundances near the range boundaries. Future studies may deal more appropriately with the intrinsic complexity of the system by including studies of adult and larval physiology, and the role of larval dispersal, which may be critical in shaping the species’ ranges and internal structures of the ranges (see also Sagarin & Gaines, 2002b). We furthermore encourage interannual and seasonal sampling across the geographic range of the organisms of interest, especially in regions strongly affected by ENSO, in order to reveal whether the realized geographic ranges might vary in time.

ACKNOWLEDGEMENTS

We appreciate the logistical help provided by Catalina Correa during some of the field samplings, and the constructive comments from Bernardo Broitman, Esteban Emperanza and two anonymous referees. This research was funded by...
REFERENCES

Abundance and life-history traits of intertidal porcelain crabs

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1 Geographic coordinates of the study sites.

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

BIOSKETCH

Members of the BEDIM laboratory (Biology, Ecology and Diversity of Marine Invertebrates) at Universidad Católica del Norte are interested in the evolutionary ecology and behaviour of marine organisms and their biogeography (http://www.bedim.cl). They have studied a wide diversity of taxa and they often use crustaceans as model organisms. During recent years they have repeatedly travelled the Chilean coast, both by land and by sea, in a quest to understand the processes that shape its marine biogeography.

Author contributions: M.T., C.C., I.H. and J.A.B. conceived the idea; S.B., M.C., C.C., A.C., E.dV., I.H., N.U., N.Va., N.Vz., A.Z. and M.T. collected and processed the samples; P.H. entered and ordered the data; P.H. and M.M.R. analysed the data; M.M.R., P.H., J.A.B. and M.T wrote the paper.

Editor: Robert McDowall